What’s Up, Albert & The 300yd Shuttle?

By James Walker, CCS, STM, BioSig, Master Trainer

In this day and age of technology (cell phones, ipods, laptops, aps, internet, google, etc) that makes gathering information very accessible it’s amazing that so much incorrect and ignorant information permeates the airwaves, internet, and newsprint spheres. And this comes from journalist or in this case sports journalists who we used to rely on for accurate information! Especially since correct and reliable information is only a phone call or keystroke away.

There are countless university exercise science professors and sports-performance-strength coaches, all eagerly ready to be interviewed by some famous sports journalist concerning Albert Haynesworth’s struggle in the 300-yard shuttle. Why can’t he pass it or how should he have prepared in order to pass the easy or hard, depending on the commentator, 300 yd-shuttle test. “He needs more cardio”, “why didn’t his trainer prepare him”, “why didn’t he lose weight”, oh yeah he did lose weight, about 35 lb, “so why didn’t he pass”, or “just because he lost weight doesn’t mean he’s in football shape”, right?

I know all of my former professors, strength coaches, and exercise specialist who have mentored me the past 30 years cringe every time they hear, read, or see the responses from all of the media experts.

The 300-yard shuttle run consists of sprinting 25-yards down and back six times touching the line with the foot in order to complete 300 yards total distance. The times may range from 56 seconds for football receivers and defensive backs to 73 seconds for offensive and defensive linemen. After completion the participant rests 3-5 minutes (3 & ½ for the NFL Washington Redskins) then repeats the test a second time. The times can then be averaged or compared to determine the athlete’s fitness level.

The purpose of the 300-yard shuttle run is to test maximal anaerobic-sprint endurance and/or conditioning. In order to attain a reliable score the participant must sprint at maximum effort and not pace themselves. The general testing populations are sports that involve anaerobic-sprint endurance like-.basketball, hockey, rugby, and soccer.

Now I must confess that when I had to take Testing and Measurement and Statistics decades ago I thought I’d never use any of it but I’ve consistently relied on and utilized the information over and over, especially administering performance assessments and analyzing training data.

All test must be valid, reliable, and objective, all interrelated values and that the measurement must measure the component that it supposed to measure; measure the component consistently; and result in similar scores regardless of the administer.

Let’s look at a quick review of those terms valid, reliable, and objective.

Test validity refers to the degree to which the test measures a specific component that it is intended to measure. The test should contain tasks that reflect those specific components to be measured or it’s content validity.

Test reliability refers to the degree to which the test yields consistent and stable scores over repeated trials and time. Reliability depends upon how strict the test is conducted and how motivated the participant is to perform the test.

Test objectivity refers to the degree to which the test can be measured repeatedly and reliably by various testers with minimum subjectivity.

So in spite of how you may feel about Albert and his conditioning it’s amazing that this test is used to test football players, yet alone a 300 lb lineman. Considering that the average play last between 4-5 seconds, why would you test something that last 50-70 seconds? Does this sound valid, reliable, or objective?

First of all, 4-5 seconds of maximal effort utilize absolute strength, power, and speed, all anaerobic bio-components that involve IIB fast-twitch muscle fibers and alactic-glycolytic energy systems.

Secondly, 56-73 seconds of maximal effort (actually slightly sub-maximal) utilize strength and speed endurance that involves IIA fast-twitch muscle fibers and lactic-glycolytic energy systems. The two are very different in their respective functions and actions.

Thirdly, there is another sub-maximal speed endurance IIA fiber that utilizes a glycolytic-oxidative energy system.

Fourthly, none of these are aerobic which starts to kick in after several minutes of continuous sub-maximal effort that involve slow–twitch IA muscle fibers and primarily an oxidative energy system.

In the exercise science community it really doesn’t make since. So when these experts see test such as the 300-yard shuttle or parts of the NFL combine test they cringe, shake their heads, and wonder if any of them ever picks up an exercise science journal or text.

In summary the test is not a very good indicator of anaerobic alactic power required for football. It does not make sense to any knowledgeable exercise scientist. A better test for football conditioning would involve maximal efforts of 4-5 second that are repeated numerous times with 15-30 seconds of recovery to simulate the huddle. Watch the game, doesn’t that make more since?           

‘Train Safe, Smart, & Results Driven’

                                    

Training Principles, Four - Principles Of Exercise Science Con’t

By James Walker CCS, STM, BioSig, Master Trainer

Training principles of exercise science con’t…

10. Overload and Progressive Loading – neuromuscular adaptation occurs as a result of progressive amounts of overload or in other words your body adapts to progressive small amounts of stress (fictitious Greek wrestler Milo carrying the calf until it’s a full grown bull).

·      This adaptation is optimal when the progression of stress or overload is gradual and in small increments of 1-5% of the working intensity level (also called the Kaizen Principle of constant and never ending improvement by increasing in small increments over a long period of time).

11. Over Training - is caused by constant training that does not allow adequate time for recovery, regeneration, or super compensation to occur.

·      Symptoms may include irritability, increase in injury, healing time, resting heart rate, normal blood pressure, illness, change in mood and appetite, decrease in immune system and performance.

·      In addition to excessive inflammation, scar tissue formation, over compensation of other body parts, soft tissue strain and tear, bone fractures, and a weakened level of strength and conditioning.

·      Example-scar tissue, traps or hamstring or calve, get volunteer

12. Periodization or Periodized Training - is a pre-planed training plan, which consists of short or long-term cycles (days vs. weeks vs. months), with changes in the workout at regular intervals.

·      By manipulating your training variables, such as variations in exercises, reps, sets, and weight load intensities you will maximize your progress and motivation, and help to prevent plateaus, injuries, and over-training.

13. Posture, Stability, and Synergist Muscles – are muscles that assist the primary (larger) muscles by helping to hold a position to achieve the desired action. This help is called synergist.

·      e.g., when sprinting the ankle dorsi- flexor muscles and the toe extensor muscles put the foot in the correct position prior to the foot strike.

·      The synergist may also assist in achieving a particular action.

·      e.g; in elbow flexion the arm biceps may get assistance from the forearm brachioradialis muscle.

·      Often these muscles are the smaller muscles and/or the secondary actions of neighboring muscles.

14. Reflex Inhibition –when a muscle is injured by repetitive use, trauma, faulty motor patterns, imbalances, or scar tissue, the central nervous system shuts down the neural drive to the muscle (turns off the muscle) to protect it from further injury.

15. Rep and Set variation – rep and set ranges should be varied for each training cycle (2-4 weeks for advance trainees, 5-8 weeks for experienced trainees, 9-12 weeks for intermediate trainees, and 13-16 weeks for beginners).

·      This will allow total muscle and strength development and will reduce overuse syndromes.

·      For example a muscle hypertrophy workout cycle: cycle One - 6 reps x 6 sets; cycle Two - 12 reps x 3 sets; cycle Three - 8 reps x 5 sets; and cycle Four - 10 reps x 4 sets.

·      For example relative strength or power workout cycle: cycle One - 5 reps x 5 sets; cycle Two - 2 reps x 8 sets; cycle Three - 4 reps x 6 sets; and cycle Four - 1 reps x 10 sets.

·      The rep ranges should be based on your objectives, whether for relative strength and power or for hypertrophy strength or for muscle endurance, whichever need is the priority.

·      The set ranges will help determine and influence the conditioning of the muscle fibers trained.

 ‘Train Safe, Smart, & Results Driven’

In-Season Strength Training: Part Two

By James Walker CCS, STM, BioSig, Master Trainer

In Part One we defined in-season training and listed the first two objectives when designing a program including exercise selection and energy system needs of the athlete. In Part Two we are discussing the remaining components that determine an athletes program, including rep range, weight load-intensity, muscle fiber type, and  work volume consideration.

An intertwined objective to consider when determining the athlete’s program is choosing the correct rep range, weight load-intensity, and muscle fiber type that’s needed to improve their performance. A blocker or outside hitter in volleyball will need to develop and recruit their fast twitch fibers, so doing between 1-6 reps, with 95-80% of their one rep max (1RM), for their phasic muscles will accomplish this. Similarly, a running back in football will benefit from the same intensity and rep ranges. Now these values can vary depending on the age, maturity, health, and genetic make up of the athlete but explosive power is the important component.

On the other hand the cross-country runner may require 15-20 reps or more, at 60-70% of their 1RM to improve their muscle endurance but may benefit from the 1-10 rep range at 75-95% 1RM to help with 100-400 meter surges or sprint finishes. Several of the top Olympic middle distance runners employ this method in their training.

Either of these athletes may require a different rep range and intensity level to address their individual structural needs. In general if their tonic or postural muscles need work a rep range of 8-15, at an intensity of 80-70% of 1RM, may be required. The specific needs of the individual will always be the most beneficial to them.

The last proponent to consider is the appropriate volume of work needed to maintain and/or improve ability without over-training. The primary focus during the season should be the development of the necessary skills, ability, and strategy needed to perform the sport or position at the highest level. The secondary focus should be on maintaining and/or improving power, strength, and conditioning that was developed during the off-season. Usually most in-season practice is devoted to game preparation, sports skills, drills, strategy, tactics, plays, and related task. Therefore most of the repetition and conditioning will come from those activities, so strength related training only needs to occupy about 10-15% of the athletes total weekly time. That can be accomplished in one or two sessions, with consideration given to adequate recovery time before the day of the competition. Ideally the strength training should enhance practices, skills, abilities, and performance, while reducing the injury potential.

Likewise, practices shouldn’t injure the athlete or hinder their strength training but allow for mutual improvement, or a complete synergistic relationship. A big mistake often made is to abandon strength training during the season. This will usually start to gradually impact performance or increase injury potential after about 14 days. The athlete may start the season strong, fast, powerful, explosive, and energetic but within a few weeks will start to exhibit weakness, slowness, sluggishness, or tiredness.

Coincidently, the residual effects from strength training may last up to 10 days; so training a muscle group at least once a week or every 7 days will allow maximal recovery and strength gains. Often world-class sprinters require up to 7-10 days to fully recover, after running a personal record.

So a cheerleader who practices about 10 hours a week, excluding a 3-hour Friday evening game, at 10% of her weekly practice time the strength training would require about 1 hour to complete. Depending on equipment, facility, scheduling, etc, the 1-hour time could be divided into two 30-minute segments as to minimize time away from skills practice. This could be accomplished with a 30-minute strength training session on Saturday (the day after the game), followed by another 30-minute session on Monday or Tuesday, which would also give plenty of recovery time prior to the game. Each session would be comprised of 4 strength-power exercises for 4-8 reps, times 2 sets; and 2-4 structural exercises for 8-15+ reps, for 1-2 sets. The exercise selection could be different for each session to target various or specific muscle groups as well.

As you can see the exercise selection, energy system, rep range, weight load-intensity, muscle fiber type, and volume all comply with her in-season strength training needs. The exercise selection should depend on her individual needs and ability level. Likewise, considering the amount of impact and repetitive stress related injuries that cheerleaders accrue i.e., sprains, strains, twists, pulls, fractures, and soft-tissue adhesions, this would help to address those concerns. Not to mention the additional strength to help with the skills execution.

In conclusion, the benefits of the in-season strength training far out-way the time, cost, injury potential, and other factors involved.  The correct, safe, and scientific approach should consider exercise selection, energy system, rep range, weight load-intensity, muscle fiber type, and volume to best address the athletes in-season needs.

Training Smart vs. Hard Which Is Better?

By James Walker CCS, STM, BioSig, Master Trainer

I've been telling my clients for decades that it's better to train smart than hard given the choice. I find myself exporting these words to younger athletes almost on a daily basis. It sounds smart to say it but what does it really mean?

You always hear athletes talking about training hard or how hard their training session was. I think they are referring to effort and difficulty, meaning if a workout requires a lot of effort or is difficult to execute then it’s hard, and it must be good.

With this model working out to exhaustion or past muscle failure is the standard for a productive training session. If you’re suppose to do 10 repetitions, do 12 or 15 or 20, it’s better. Maybe the athlete is supposed to run eight, 20-meter sprints but instead they run twenty or even forty. As you can see this type of philosophy were more is better can apply to any type of training. Quality and purpose go out the window for quantity and difficulty.

Workout until you puke or pass-out is the goal and every training session should be like this! I see trainers in the gym doing this with clients all the time. The client has reached muscle failure with reasonable form at 10 reps but the trainer belts out “I want 10 more”. You then see the client attempting the next 10 reps looking like a contortionist with the circus.

Likewise I've heard horror stories from athletes who were injured after being told to lift progressively heavier weights or more reps, without considering correct form, structure, progression or supervision.

The problem that I have with this type of training is that it’s not very quantifiable or scientific, yet it’s hard or difficult. Quantifiable meaning there are no restrictions or limitations or rules regarding training nor any record keeping or training logs. You rarely see the trainer or trainee keeping a record of their reps, sets, or session when doing this type of protocol.

If they did, then it would become obvious after a month or two. Especially when the trainee’s strength, endurance, reps, or composition hasn’t changed. In addition the trainee is consistently tired and has sleep, inflammation, or tendinitis issues. It’s not working!

Training scientifically means using the principles of science to orchestrate, predict, and maximize the client’s progress by planning and prescribing correct protocols.

For example the Principle of Super Compensation states that when your body or muscles fully recover from the workout you have a better increase in strength-performance than with a partial or limited recovery period. So if you’re tired reducing the volume or number of sets in the workout will yield better results vs. doing the entire workout just because it’s scheduled, hard, or challenging.

Likewise waiting an extra day or two to allow complete recovery may yield even better results. Not only better results but possible a reduction in injury and illness by not over exhausting an already tired immune system. That’s scientific or smart training!

Another scientific principle that gets violated when hard misguided training methods are used is called faulty motor pattern, affecting the muscle recruitment patterns in a negative way. For example if a squat is perform with a weight load that is too heavy or the repetition number goes beyond what the trainee can perform with correct form, the central nervous system will recruit additional muscles to complete the task. If those additional muscles aren’t design or trained to perform that task, inflammation, scar tissue, or injuries will result from this compensation.

By knowing scientific principles and how to apply them you can reach your goals faster, safer, easier, and smarter. By having an outline or plan to achieve your goals you will reduce over training, injury, frustration, and optimize results. This is called Periodization, planning your workout in advance by weekly and monthly stages, in order to achieve your goals.

Training this way is measurable, repeatable, quantifiable, reliable, objective, valid, challenging, and more controllable yet yields predicable results, very scientific. Whereas hard training is just hard!