Speed Training with Nick Sorensen

Nick S.jpg

By James Walker CCS, STM, BioSig, Master Trainer

Nick Sorensen trained with AE most of his 10 year NFL career during his off seasons, beginning in June of 2002, after being drafted and released by the Miami Dolphins. That first year we worked with him for five and a half weeks prior to the pre-season camp.

After the initial assessment, we focused on improving his explosiveness, lean muscle mass, his lower core function, flexibility, sprint technique, and reminding him of the correlation between all of those things and his speed. In addition, we addressed his scar tissue needs, in the shoulders, rotator cuff, and lower legs, which inhibited muscle recruitment and performance, along with a few structural balance issues.

Nick never had an issue with body-fat ratios or fat composition, due to clean-healthy eating habits, even in the off season his body-fat was in the 6% and during the season 4%. When Nick began, his best forty-yard time was 4.41 seconds, when he left for camp his best time was 4.35 seconds.

In 2003 we wanted to make him completely healthy, muscular, and strong from the previous season's injuries. By camp with the Jaguars Nick was performing 135 lb dips, 50 lb close grip pull-ups, and 225 jerk presses, all for 3 reps. Likewise his sprinting technique was superb, with excellent angles, tempos, power, and limb placement. His best 40-yard times were 4.28 and 4.23 seconds.

In 2004 we started early as well, working around an elbow injury that he sustained at the end of the 2003 season. Although his time with us was limited due to team obligations and constraints but our goal was to increase his lean muscle mass, strength, explosiveness, over all flexibility, and muscle balance.

During the remainder of his career we worked with Nick through and around injuries to the elbow, shoulder, and lower leg, team off-season training restrictions, releases, transitions, and new team auditions. We would try and maintain all his performance qualities, muscle mass, strength, speed, power, range of motion, structural balance, scar tissue, and any minor injury concerns.

Through it all he learned to be proactive, disciplined, consistent, informed, healthier, and prepared in all phases of his self-care. Nick has been one of the fastest players on each of his teams, the Rams, Jaguars, Browns, and in the NFL. He maintained his 4.2s speed, until his retirement as a result of a neck injury in 2010.

‘Train Safe, Smart, & Results Driven’

 

 

 

What’s Up, Albert & The 300yd Shuttle?

By James Walker, CCS, STM, BioSig, Master Trainer

In this day and age of technology (cell phones, ipods, laptops, aps, internet, google, etc) that makes gathering information very accessible it’s amazing that so much incorrect and ignorant information permeates the airwaves, internet, and newsprint spheres. And this comes from journalist or in this case sports journalists who we used to rely on for accurate information! Especially since correct and reliable information is only a phone call or keystroke away.

There are countless university exercise science professors and sports-performance-strength coaches, all eagerly ready to be interviewed by some famous sports journalist concerning Albert Haynesworth’s struggle in the 300-yard shuttle. Why can’t he pass it or how should he have prepared in order to pass the easy or hard, depending on the commentator, 300 yd-shuttle test. “He needs more cardio”, “why didn’t his trainer prepare him”, “why didn’t he lose weight”, oh yeah he did lose weight, about 35 lb, “so why didn’t he pass”, or “just because he lost weight doesn’t mean he’s in football shape”, right?

I know all of my former professors, strength coaches, and exercise specialist who have mentored me the past 30 years cringe every time they hear, read, or see the responses from all of the media experts.

The 300-yard shuttle run consists of sprinting 25-yards down and back six times touching the line with the foot in order to complete 300 yards total distance. The times may range from 56 seconds for football receivers and defensive backs to 73 seconds for offensive and defensive linemen. After completion the participant rests 3-5 minutes (3 & ½ for the NFL Washington Redskins) then repeats the test a second time. The times can then be averaged or compared to determine the athlete’s fitness level.

The purpose of the 300-yard shuttle run is to test maximal anaerobic-sprint endurance and/or conditioning. In order to attain a reliable score the participant must sprint at maximum effort and not pace themselves. The general testing populations are sports that involve anaerobic-sprint endurance like-.basketball, hockey, rugby, and soccer.

Now I must confess that when I had to take Testing and Measurement and Statistics decades ago I thought I’d never use any of it but I’ve consistently relied on and utilized the information over and over, especially administering performance assessments and analyzing training data.

All test must be valid, reliable, and objective, all interrelated values and that the measurement must measure the component that it supposed to measure; measure the component consistently; and result in similar scores regardless of the administer.

Let’s look at a quick review of those terms valid, reliable, and objective.

Test validity refers to the degree to which the test measures a specific component that it is intended to measure. The test should contain tasks that reflect those specific components to be measured or it’s content validity.

Test reliability refers to the degree to which the test yields consistent and stable scores over repeated trials and time. Reliability depends upon how strict the test is conducted and how motivated the participant is to perform the test.

Test objectivity refers to the degree to which the test can be measured repeatedly and reliably by various testers with minimum subjectivity.

So in spite of how you may feel about Albert and his conditioning it’s amazing that this test is used to test football players, yet alone a 300 lb lineman. Considering that the average play last between 4-5 seconds, why would you test something that last 50-70 seconds? Does this sound valid, reliable, or objective?

First of all, 4-5 seconds of maximal effort utilize absolute strength, power, and speed, all anaerobic bio-components that involve IIB fast-twitch muscle fibers and alactic-glycolytic energy systems.

Secondly, 56-73 seconds of maximal effort (actually slightly sub-maximal) utilize strength and speed endurance that involves IIA fast-twitch muscle fibers and lactic-glycolytic energy systems. The two are very different in their respective functions and actions.

Thirdly, there is another sub-maximal speed endurance IIA fiber that utilizes a glycolytic-oxidative energy system.

Fourthly, none of these are aerobic which starts to kick in after several minutes of continuous sub-maximal effort that involve slow–twitch IA muscle fibers and primarily an oxidative energy system.

In the exercise science community it really doesn’t make since. So when these experts see test such as the 300-yard shuttle or parts of the NFL combine test they cringe, shake their heads, and wonder if any of them ever picks up an exercise science journal or text.

In summary the test is not a very good indicator of anaerobic alactic power required for football. It does not make sense to any knowledgeable exercise scientist. A better test for football conditioning would involve maximal efforts of 4-5 second that are repeated numerous times with 15-30 seconds of recovery to simulate the huddle. Watch the game, doesn’t that make more since?           

‘Train Safe, Smart, & Results Driven’

                                    

Training Principles, Part Seven - Basic Sprint Mechanics

By James Walker CCS, STM, BioSig, Master Trainer

 If you’re not blessed to have a biomechanics coach or fortunate enough to work with a competent sprint coach, no one explains or teaches you correct sprint mechanics. Even having a speed & conditioning coach you may not receive the technical or biomechanical information necessary to improve sprinting. Instead you may get an over indulgence of volume running or gimmick training. I’m not suggesting that some devices can’t enhance your speed but they should be a supplement to proper mechanics, structural integrity, muscle fiber recruitment, and overall strength. Here are the basics of sprinting.

1. Sprint Running Mechanics – to run at a fast pace that requires a high or intense neuromuscular effort. The basics of sprinting can be summed up into three phases - start phase, drive phase, and acceleration phase.

a) Start Phase - may be from a two, three, or four point stance, requiring strength and power to over come inertia. Below is a checklist of proper mechanics:

·      Head position-should be down with chin near the collar and neck relaxed.

·      Torso position-(two & three point stances) should be achieved with the hips being higher than the head or hips raised with the shoulders slightly forward of the hands.

·      Arm & hand position-finger tips or hands should be on the line (in a four point stance) or the opposite side hand to the front foot (in a three point stance) with the other arm extended back slightly higher than the hips.

·      Leg & feet position-should be determined by the feet position close (bunched), medium, or elongated. The front foot should be approximately one foots length from the start line with a 90 degree knee angle, while the back foot should be positioned to allow a 120 degree knee angle (this is also the stronger and/or more coordinated leg. Both heels are raised with the front bearing the most weight.

b) Drive Phase - coming out of the start to over come inertia from the stationary position or stance to achieve a 45-degree body lean angle.

·      Head position-should be looking down at the ground but relaxed (the head position dictates the body or torso position).

·      Torso position-should be 45 degree lean angle.

·      Arm & hand position-should be relaxed with a 90 degree angle at the elbow and strong powerful alternating elbow drive to the rear on the backswing.

·      Leg & feet position-feet should be dorsiflexed (toes and ankles pulled up toward the shins) with the ball of the foot (forefoot) striking the ground behind the hips. The legs should drive down toward the ground in a powerful motion (like auto pistons or punching the heavy bag) after the heel is pulled up into the hamstring area (this actually precedes the leg drive). Tighter knee angle and knee lift equals greater striking force. The first few foot strike are critical, they must be powerful and explosive (importance of leg, hip, back, & core strength).

c) Acceleration Phase - post drive phase to reach the maximum running speedwith a 70 degree body lean angle.

·      Head position-should be neutral with the chin level to the ground but relaxed (the head position dictates the body or torso position).

·      Torso position-should be 70 degree lean angle.

·      Arm & hand position-should be relaxed with a 90 degree angle at the elbow and strong powerful alternating elbow drive to the rear on the backswing. The hand or fist should automatically return into the front-swing but only to shoulder level.

·      Leg & feet position-feet should be dorsiflexed (toes and ankles pulled up toward the shins) with the ball of the foot (forefoot) striking the ground under the hips. The legs should drive down toward the ground in a powerful drive motion (focus on striking the ground under the hips) after the heel is pulled up into the hamstring area, which facilitates knee lift or a tight knee angle (this actually precedes the leg drive). Tighter knee angle and knee lift equals greater striking force.

‘Train Safe, Smart, & Results Driven’

Training Principles, Part Three -Principles Of Exercise Science Con’t

By James Walker CCS, STM, BioSig, Master Trainer

Training principles of exercise science con’t…

7. Muscle Balance – each muscle action or group has an opposite muscle action or group (agonist vs. antagonist).

·      e.g. triceps vs. biceps, must maintain a mutual balance in strength and flexibility to function properly.

·      In performance activity the antagonist muscles may act as a brake to slow down acceleration e.g. the elbow flexors act as a brake to the elbow extensors in a punch, so they need to be strong to perform this task.

·      Demonstrate-a throw or punch or sprint.

8. Muscle Fiber Type and Energy System – there are two basic muscle fiber types, slow twitch (IA) and fast twitch (IIAo, IIA & IIB). Each muscle fiber type has a corresponding energy system that supplies it and determines its action and performance parameters.

·      Slow twitch (IA) utilizes oxygen (aerobic) as its primary energy source, 3 minutes or longer duration and has an intensity threshold of 25% or less of the persons strength capacity and is used during postural and endurance activities.

·      Fast twitch oxidative glycolytic IIAo utilizes glycogen (anaerobic) and oxygen (aerobic) as its energy sources and is strength endurance oriented, 2 to 3 minutes in duration and has an intensity of 25% to 60% of a person’s maximal strength capacity.

·      Fast twitch glycolytic IIA utilizes glycogen (anaerobic) as its primary energy source and is strength oriented, 13 to 30 seconds in duration and has an intensity of 60% to 85% of a person’s maximal strength capacity.

·      Fast twitch phosphogenic IIB utilizes creatine phosphate (CP) and adenosine triphosphate (ATP) (anaerobic) as its primary energy sources and is explosive-power oriented, 1 to 12 seconds in duration and has an intensity threshold of 85% to 100% of a person’s maximal strength capacity.

·      Examples: 25-50 mile race vs.800-1500 meters vs. 200-400 meters vs. 50-100 meters sprint.

9. Muscle Receptors and Sensors – within the muscles there are various receptors and sensors (proprioceptors) that perform specific tasks e.g.,

·      vestibular receptors- measure balance and equilibrium;

·      muscle spindle- measures change in muscle fiber length and change in muscle fiber speed;

·      Golgi tendon organ- measures the range of motion (rom) or stretch in muscle tendons;

·      Ruffini receptors- measures the position of the muscle and joint in relation to space;

·      Pacinian corpuscle- measures the tension and pressure within the muscle fiber and tendon.

·      All of these sensors relay information from the muscles to the spinal cord and/or to the brain or central nervous system. In turn the appropriate muscle response occurs. 

‘Train Safe, Smart, & Results Driven’

Training Principles, Part Two - Principles Of Exercise Science

By James Walker CCS, STM, BioSig, Master Trainer

There are quite a few scientific principles that apply to training. I will list some of my favorites that I use daily.

1. Central Nervous System Training (CNST) – is made up of the brain, spinal cord, nerve pathways, and sensors to the muscles and organs.

·      The impulse or signal to the muscles from the spinal cord is called neural drive, involving motor or efferent neurons, nerve fibers, motor units, motoneurons, and muscle fibers.

·      Things that interrupt and obstruct neural drive are poor posture, improper form, flexibility and strength imbalances, nerve injury, and scar tissue.

·      Demonstrate-ROM with proper vs. poor flexibility, seated rotation or elbow retraction

2. Critical Drop Off (CDO) – after the first set If the rep number drops by more than 2, e.g., from 6 to 3 reps or 20-30%, the particular exercise should be discontinued.

·      This drop off indicates neuromuscular exhaustion so stopping will prevent over training, reduce the possibility of injury, and allow the super compensation process to begin. So move on or continue with the next exercise.

3. Exercise Variation (EV) – by varying the exercises for each cycle over training and muscle imbalance can be significantly reduced.

·      For example during workout cycle one a flat chest press can be performed and for workout cycle two an incline press can be done.

·      Exercise variation may include changes in exercise selection, or changes in hand, foot, limb angle, or body position, and in apparatus type.

4. Faulty Muscle Recruitment (FMR) and Loading Patterns – faulty muscle recruitment occurs as a result of performing a task incorrectly and may be caused by:

·      Scar tissue present within the muscle which impedes its ability to function normally.

·      A muscle imbalance that effects the neural drive to the muscle.

·      Using too heavy a load so that the appropriate muscles can not perform the task.

·      Continuing to train while not addressing any of the previous issues or several other factors.

·      Remember how you practice will influence how you play and perform.

5. Faulty Loading Patterns (FLP) and Muscle Type Response – stability muscles also known as postural or tonic muscles tend to shorten and tighten under faulty or improper loading.

·      Their composition seems to be mostly slow twitch or IA type fibers.

·      While the dynamic, explosive, or phasic muscles tend to lengthen and weaken under faulty loading.

·      They seem to be made up of a predominance of fast twitch IIB and IIA fibers.

·      This is the general rule but some muscles may have dual roles and have a composition of several fiber types.

6. Muscle Action Response (MAR) – most muscles will be comprised of both fast and slow twitch fibers, however the percentages or ratios will vary based on genetics, and muscle group but training will affect it’s development.

·      E.g., fast vs. slow ratio may be 40:60 or 50:50 or 60:40 or 70:30, this will determine your athletic preference and possible physical training potential.

·      Muscles that flex joint angles like the arm and leg biceps tend to be comprised of mostly fast twitch fibers.

·      While muscles that extend the joint like the leg quadriceps and lower back erectors will have a greater endurance capacity.

·      Remember this is the general rule, individuals need to be tested to determine their specific muscle response.

‘Train Safe, Smart, & Results Driven’

Maximizing Metabolic Function With Strength & Structure

By James Walker CCS, STM, BioSig, MT

After years of personal experience, observational relevance, and just plain frustration with the overall level of Fitness & Health Nationally, I wanted to write an article about maximizing workout time. Since time seems to be a determining factor or excuse for not working out, I’d like to offer some ways to maximize it. Part of my rationale is if you can only do 10 minutes of intense exercise, 6 times a week, at the end of the year its 3,120 minutes, which is a lot more than zero! Most importantly it will help to improve your life, fitness, and health! It’s all accumulative!

For example, a most recent fitness study claims that sixty seconds of high intensity exercise is more valuable than 20-30 minutes of low intensity exercise. For decades’ trainers in the know have been advocating interval training over long sustained endurance work. I learned this in the early 80’s, training to improve my mile run time, which I ran in 6 plus minutes with minimal endurance work, to 4 & a half minutes with sprint and strength work.

One of the things that I learned was that quality training was more important that quantity training. So sprinting on the track, up hills, in the pool, on the bike, etc, improved my speed and fitness more than doing any long distance aerobic workouts. It required way less time, instead of 90-120 minutes, it took me to 15-30. So I started doing 2 shorter workouts a day, one in the early am and another midday or later, whenever I could get it in. This naturally elevated my metabolism and kept it going throughout the day!

Getting married, having a family, and business mentally got me away from that but recently I’ve decided to return to it but make it easily doable, which I’m sharing with you.

Upon rising exercise will jump start your metabolism for the day the only drawback is usually your mind and body aren’t fully awake so choosing an exercise that will help wake you up, like a cup of coffee, but without being overwhelmed is important. Structural strengthening exercises like Y raises, trap 3 raises, Petersen step ups, lying hip bridges, side arm rotations, planks, etc will serve this purpose. Just doing 3 sets of 60 seconds each will wake you up, jump start your day, and not require much time 4-6 minutes total, with 30-60 seconds rest or less between sets.

AM Workout Example:

Day 1, Lying single bent leg hip bridge with foot on the floor or elevated, 60s x 3 sets, with a 151 tempo.

Day 2, Front plank with forearms arms on top of a physioball, 60s x 3 sets, with a 60s tempo.

Day 3, Lying Y arm raise with dumbbells, 3-5lbs, 60s x 3 sets, with a 151 tempo.

Day 4, Petersen step ups, using a normal step, 60s x 3 sets each leg, with a 111 tempo.

Day 5, Lying Leg raise & hip lift, with knees slightly bent, 60s x 3 sets, with a 111 tempo.

Day 6, Lying on side, arm rotation with a dumbbell, 1-10lbs, 60s x 3 sets, with a 311 tempo.

Do as many as possible (amap) with good form, pause if necessary, then continue until 60s is up. Eventually you’ll be able to complete the 60s without pausing with good form.

Midday or afternoon workout would be at a higher intensity level, since your mind and body should be optimally active. Thus using large muscle groups or compound or multiple joint exercises should be the plan. This could include alternating a upper and a lower body exercise, like a push up or bench press with a squat, performed together in a superset fashion. Possibly doing each set for 30-60 seconds depending on your goal, completing 6-8 sets of each upper and lower body exercise. If Four exercises is used do 3-4 sets of each. This should take 15-30 minutes total, including a quick 3-4 set warm up for each. The resistance should be heavy but allowing good form, controlled tempo, and theability to complete the set.

Warm up sample: i.e., bench press, if your actual exercise weight is 200lb, then warm up set one is 100lb x 3-4 reps, set two is 125lb x 2-3 reps, set three is 150lb x 1-2, and set four is 175lb x 1-2 reps, or using approximately 50%, 62%, 75%, and 87% of your workout weight to warm up with.

PM Workout Example:

Day 1, A1-Barbell or dumbbell split squats, 30-60s each leg x 6 sets, with a 301 tempo; A2- Lying pull ups, 30-60s x 6 sets, with a 311 tempo.

Day 2, A1-Barbell or dumbbell Romanian deadlifts (RDL), 30-60s x 6 sets, with a 301 tempo; A2- Barbell or dumbbell bench press, 30-60s x 6 sets, with a 301 tempo.

Day 3, A1-Double or single leg Physioball leg curls, 30-60s each x 6 sets, with a 311 tempo; A2-Barbell or dumbbell upright row, 30-60s x 6 sets, with a 311 tempo.

Day 4, A1-Barbell or dumbbell squat, 30-60s x 6 sets, with a 301 tempo; A2-Chin ups, 30-60s x 6 sets, with a 201 tempo.

Day 5, A1-Barbell or dumbbell or weight plate, 45 degree back extensions, 30-60s x 6 sets, with a 311 tempo; A2-Barbell or dumbbell seated press, 30-60s x 6 sets, with a 301 tempo.

Day 6, A1-Seated or prone machine leg curls, 30-60s x 6 sets, with a 311 tempo; A2-Barbell or dumbbell pullover, 30-60s x 6 sets, with a 311 tempo.

The most important aspects are just doing it (aka Nike, ‘Just Do It’), consistency (doing it on a regular basis), correct form (good posture & tempo), intensity (70-90% of a 1 rep max lift), and short duration (15-30 minutes). The exercises can be performed numerous ways, upper body together, lower body together, upper & lower body together, or combining 2-4 exercises together.

  At night, before dinner if possible, stretch for 60s x 3 sets. Choose your worst or most difficult stretch a do it for 60s sets, preferably in a PNF manner, i.e., contract the muscle for 5-10 seconds, followed by a 2-3 second release and relax. Each night you can choose a different stretch or repeat the same tight one. This will offer you a complete training regime taking 25-35 minutes a day, keeping you active at least three times a day.

I hope this is helpful,

'Train Safe, Smart, & Results Driven’

AE Trainers Push Athletes To Next Level

 

Guest Post by Paul McKenzie from May 24, 2011

Customized program aims to locate hard-to-find weak spots in elite athletes and those looking for the next level.

People who underperform in their sport or in life in general often have trouble understanding why. AE Creating Elite on Red Rum Drive tries to provide those answers.

“Most people underperform in both,” said co-owner James Walker. “But not always for the reasons they suspect.”

AE uses in-depth assessments and ongoing analysis to find out why their clients are underperforming, whatever their goals may be. The range of goals targeted by the facility’s clientele is wide, and Walker said the expertise found in the gym’s owners and coaches makes such a range possible.

Walker said co-ownwer Monica Walker and coaches David Parks and Casey Johnson are former collegiate athletes and arena football players. “All of us have extensive training in fitness, athletics and nutrition to draw on that you can’t find in most commercial gyms,” he said. “Combined, the coaches here have almost 40 years of training and experience to draw on.”

The gym employs a specialized program, designed for each athlete. “Every client has an in-depth assessment to determine exactly what it is they need,” Walker said, adding than the goals of athletes in training are often at odds with what think they need. “We’ve had professional athletes come in with pain in their hamstrings, for example, whose physical trainers believe that they just need someone to help them be more flexible there. After an assessment, they discover that their lower abdominal area is weak and their quads are tight, which is leading to the hamstring pain. Fix that area, and their hamstring pain goes away.”

As another example, Walker said golfers and squash players have come to the facility to improve arm strength only to find that imbalances in their shoulders are what hold them back. The important point to remember in their approach, Walker emphasized, is that the body is a holistic machine.

“For the older noncompetitive athlete, we aren’t assessing to see how fast they can hit a ball, but rather how they do the basic motor skills like running, jumping, throwing and swinging,” Walker explained. “For the elementary level child, we’re emphasizing mastering those same basic sports skills. For more competitive athletes or older children, we focus on more sports-specific movements, but always with the same approach of treating the body as an interactive and holistic machine.”

The cost of misunderstanding the mechanics of a movement can be twofold, according to Walker: lower performance and higher risk of injury.

“When you ask a body part to take on a load for which it isn’t designed, your body will try to obey you, but you’ll be under performing, and perhaps more importantly, you’ll be operating with a much higher risk of injury. In our assessment we’re looking for subtle cues that others often don’t see or look for to find exactly where the problem lies, and sometimes it’s in an area a novice might easily miss.”

And the desire to correct such imbalances is not limited to elite athletes.

“Everyone wants to perform better, even if they’re not competing for a belt or medal,” Walker emphasized. “They all want to walk or run better and without pain.”

Walker works with professional athletes routinely, but said the real payoff often comes from watching other clients grow. In the end, Walker is passionate about possibilities, and is convinced that most people can accomplish far more than they believe possible.

AE Creating Elite is located at 21690 Red Rum Dr., Suite 102 & 117, Contact the facility at 703.488.9860 or info@aecreatingelite.com.