Speed Training with Nick Sorensen

Nick S.jpg

By James Walker CCS, STM, BioSig, Master Trainer

Nick Sorensen trained with AE most of his 10 year NFL career during his off seasons, beginning in June of 2002, after being drafted and released by the Miami Dolphins. That first year we worked with him for five and a half weeks prior to the pre-season camp.

After the initial assessment, we focused on improving his explosiveness, lean muscle mass, his lower core function, flexibility, sprint technique, and reminding him of the correlation between all of those things and his speed. In addition, we addressed his scar tissue needs, in the shoulders, rotator cuff, and lower legs, which inhibited muscle recruitment and performance, along with a few structural balance issues.

Nick never had an issue with body-fat ratios or fat composition, due to clean-healthy eating habits, even in the off season his body-fat was in the 6% and during the season 4%. When Nick began, his best forty-yard time was 4.41 seconds, when he left for camp his best time was 4.35 seconds.

In 2003 we wanted to make him completely healthy, muscular, and strong from the previous season's injuries. By camp with the Jaguars Nick was performing 135 lb dips, 50 lb close grip pull-ups, and 225 jerk presses, all for 3 reps. Likewise his sprinting technique was superb, with excellent angles, tempos, power, and limb placement. His best 40-yard times were 4.28 and 4.23 seconds.

In 2004 we started early as well, working around an elbow injury that he sustained at the end of the 2003 season. Although his time with us was limited due to team obligations and constraints but our goal was to increase his lean muscle mass, strength, explosiveness, over all flexibility, and muscle balance.

During the remainder of his career we worked with Nick through and around injuries to the elbow, shoulder, and lower leg, team off-season training restrictions, releases, transitions, and new team auditions. We would try and maintain all his performance qualities, muscle mass, strength, speed, power, range of motion, structural balance, scar tissue, and any minor injury concerns.

Through it all he learned to be proactive, disciplined, consistent, informed, healthier, and prepared in all phases of his self-care. Nick has been one of the fastest players on each of his teams, the Rams, Jaguars, Browns, and in the NFL. He maintained his 4.2s speed, until his retirement as a result of a neck injury in 2010.

‘Train Safe, Smart, & Results Driven’

 

 

 

Training Principles, Part Seven - Basic Sprint Mechanics

By James Walker CCS, STM, BioSig, Master Trainer

 If you’re not blessed to have a biomechanics coach or fortunate enough to work with a competent sprint coach, no one explains or teaches you correct sprint mechanics. Even having a speed & conditioning coach you may not receive the technical or biomechanical information necessary to improve sprinting. Instead you may get an over indulgence of volume running or gimmick training. I’m not suggesting that some devices can’t enhance your speed but they should be a supplement to proper mechanics, structural integrity, muscle fiber recruitment, and overall strength. Here are the basics of sprinting.

1. Sprint Running Mechanics – to run at a fast pace that requires a high or intense neuromuscular effort. The basics of sprinting can be summed up into three phases - start phase, drive phase, and acceleration phase.

a) Start Phase - may be from a two, three, or four point stance, requiring strength and power to over come inertia. Below is a checklist of proper mechanics:

·      Head position-should be down with chin near the collar and neck relaxed.

·      Torso position-(two & three point stances) should be achieved with the hips being higher than the head or hips raised with the shoulders slightly forward of the hands.

·      Arm & hand position-finger tips or hands should be on the line (in a four point stance) or the opposite side hand to the front foot (in a three point stance) with the other arm extended back slightly higher than the hips.

·      Leg & feet position-should be determined by the feet position close (bunched), medium, or elongated. The front foot should be approximately one foots length from the start line with a 90 degree knee angle, while the back foot should be positioned to allow a 120 degree knee angle (this is also the stronger and/or more coordinated leg. Both heels are raised with the front bearing the most weight.

b) Drive Phase - coming out of the start to over come inertia from the stationary position or stance to achieve a 45-degree body lean angle.

·      Head position-should be looking down at the ground but relaxed (the head position dictates the body or torso position).

·      Torso position-should be 45 degree lean angle.

·      Arm & hand position-should be relaxed with a 90 degree angle at the elbow and strong powerful alternating elbow drive to the rear on the backswing.

·      Leg & feet position-feet should be dorsiflexed (toes and ankles pulled up toward the shins) with the ball of the foot (forefoot) striking the ground behind the hips. The legs should drive down toward the ground in a powerful motion (like auto pistons or punching the heavy bag) after the heel is pulled up into the hamstring area (this actually precedes the leg drive). Tighter knee angle and knee lift equals greater striking force. The first few foot strike are critical, they must be powerful and explosive (importance of leg, hip, back, & core strength).

c) Acceleration Phase - post drive phase to reach the maximum running speedwith a 70 degree body lean angle.

·      Head position-should be neutral with the chin level to the ground but relaxed (the head position dictates the body or torso position).

·      Torso position-should be 70 degree lean angle.

·      Arm & hand position-should be relaxed with a 90 degree angle at the elbow and strong powerful alternating elbow drive to the rear on the backswing. The hand or fist should automatically return into the front-swing but only to shoulder level.

·      Leg & feet position-feet should be dorsiflexed (toes and ankles pulled up toward the shins) with the ball of the foot (forefoot) striking the ground under the hips. The legs should drive down toward the ground in a powerful drive motion (focus on striking the ground under the hips) after the heel is pulled up into the hamstring area, which facilitates knee lift or a tight knee angle (this actually precedes the leg drive). Tighter knee angle and knee lift equals greater striking force.

‘Train Safe, Smart, & Results Driven’

Training Principles, Part Six - Principles Of Exercise Science Con’t

By James Walker CCS, STM, BioSig, Master Trainer

Training principles of exercise science con’t…and concluded.

20. Time Under Tension (TUT) – is the time required to complete a rep or a set (group of reps).

·      TUT is influenced by the tempo.

·      Muscle fiber type recruitment depends on time under tension.

·      e.g., tempo x reps = total time under tension per set, 302 tempo = 5 seconds total tempo x 6 reps = 30 seconds of time under tension per set.

21. Workout Duration– the anaerobic system (speed and strength) has 30–60 minutes of optimal energy before productivity decreases.

·      Keeping workouts within this time frame will increase gains in strength and performance.

·      Consequently, blood cortisol levels significantly increase after 45 minutes of working out and training becomes counter productive.

·      Simultaneously, the bodies’ natural muscle building hormone androgen begins to drop off at this time, which will further inhibit growth and gains.

·      So anaerobic workouts within 30-60 minutes will maximize increases in muscle, strength, and performance.

This concludes Part Six, next Part Seven Sprint Mechanics.

 

Training Principles, Part Five - Principles Of Exercise Science Con’t

By James Walker CCS, STM, BioSig, Master Trainer

Training principles of exercise science con’t…

16. Reps and Sets Relationship – reps and sets have an inverse relationship, fewer reps require more sets while more reps require fewer sets.

·      In part this based on the motor learning principle of “repeated effort”- when learning a new skill, task, or lesson the more times it is repeated the easier it is to remember or to perform.

·      Consequently this “repeated effort” or practice will increase the number of times that the particular muscle fiber type and its corresponding energy system gets used thereby making future efforts easier and the muscle more conditioned.

·      e.g., motor skill of riding a bike or learning a different language or exercise, the more the effort is repeated the greater the learning capacity.

17. Super Compensation – the amount of time required for the body to fully recover from the previous workout or workouts.

·      There should be full recovery prior to repeating the same muscle workout for the best gains.

·      This will result in strength increases of 1-2% or by 1-2 repetitions each week.

·      Optimal increases will not occur with out the proper rest, recovery, and regeneration.

                                                                                                                                                                                                                              18. Technique and Posture – proper form and posture are necessary for correct muscle recruitment and optimal strength gains.

·      If a movement cannot be performed with the correct technique, form, and posture it should be stopped.

·      An assessment should be made to determine the reason, so that the necessary corrections can be made.

·      Remember correct technique and posture will optimize neural drive to the correct muscles and will prevent faulty muscle recruitment patterns.

·      E.g., excessive forward lean vs. upright torso in the squat, or treadmill vs. running outside.

19. Tempo-is the pace, rhythm, and time required for each repetition.

·      Planned tempo use will ensure correct muscle fiber and energy system recruitment, and will reduce injury and faulty motor patterns.

·      Tempo is usually expressed in counts e.g., 302, 301, 30X or 402, 401, 40X, or 502, 501, 50X, that are normal but may be 31X, 512, 911 counts.

·      The first number represents the negative (eccentric) phase of the rep, usually expressed in a 2-9 range.

·      The second number usually represents the midway point, usually expressed in a 0-2 range.

·      The last number represents the positive (concentric) phase, usually expressed in a X-2 range.

·      e.g., a 302 tempo for an arm curl, starting position at the bottom with the weight in front of thigh, a 2 count is performed while the weight is curled up to the shoulders, a 0 pause at the top or midway position,  a 3 count is done while lowering the weight to the start.

‘Train Safe, Smart, & Results Driven’

Training Principles, Part Three -Principles Of Exercise Science Con’t

By James Walker CCS, STM, BioSig, Master Trainer

Training principles of exercise science con’t…

7. Muscle Balance – each muscle action or group has an opposite muscle action or group (agonist vs. antagonist).

·      e.g. triceps vs. biceps, must maintain a mutual balance in strength and flexibility to function properly.

·      In performance activity the antagonist muscles may act as a brake to slow down acceleration e.g. the elbow flexors act as a brake to the elbow extensors in a punch, so they need to be strong to perform this task.

·      Demonstrate-a throw or punch or sprint.

8. Muscle Fiber Type and Energy System – there are two basic muscle fiber types, slow twitch (IA) and fast twitch (IIAo, IIA & IIB). Each muscle fiber type has a corresponding energy system that supplies it and determines its action and performance parameters.

·      Slow twitch (IA) utilizes oxygen (aerobic) as its primary energy source, 3 minutes or longer duration and has an intensity threshold of 25% or less of the persons strength capacity and is used during postural and endurance activities.

·      Fast twitch oxidative glycolytic IIAo utilizes glycogen (anaerobic) and oxygen (aerobic) as its energy sources and is strength endurance oriented, 2 to 3 minutes in duration and has an intensity of 25% to 60% of a person’s maximal strength capacity.

·      Fast twitch glycolytic IIA utilizes glycogen (anaerobic) as its primary energy source and is strength oriented, 13 to 30 seconds in duration and has an intensity of 60% to 85% of a person’s maximal strength capacity.

·      Fast twitch phosphogenic IIB utilizes creatine phosphate (CP) and adenosine triphosphate (ATP) (anaerobic) as its primary energy sources and is explosive-power oriented, 1 to 12 seconds in duration and has an intensity threshold of 85% to 100% of a person’s maximal strength capacity.

·      Examples: 25-50 mile race vs.800-1500 meters vs. 200-400 meters vs. 50-100 meters sprint.

9. Muscle Receptors and Sensors – within the muscles there are various receptors and sensors (proprioceptors) that perform specific tasks e.g.,

·      vestibular receptors- measure balance and equilibrium;

·      muscle spindle- measures change in muscle fiber length and change in muscle fiber speed;

·      Golgi tendon organ- measures the range of motion (rom) or stretch in muscle tendons;

·      Ruffini receptors- measures the position of the muscle and joint in relation to space;

·      Pacinian corpuscle- measures the tension and pressure within the muscle fiber and tendon.

·      All of these sensors relay information from the muscles to the spinal cord and/or to the brain or central nervous system. In turn the appropriate muscle response occurs. 

‘Train Safe, Smart, & Results Driven’