Training Principles, Part Seven - Basic Sprint Mechanics

By James Walker CCS, STM, BioSig, Master Trainer

 If you’re not blessed to have a biomechanics coach or fortunate enough to work with a competent sprint coach, no one explains or teaches you correct sprint mechanics. Even having a speed & conditioning coach you may not receive the technical or biomechanical information necessary to improve sprinting. Instead you may get an over indulgence of volume running or gimmick training. I’m not suggesting that some devices can’t enhance your speed but they should be a supplement to proper mechanics, structural integrity, muscle fiber recruitment, and overall strength. Here are the basics of sprinting.

1. Sprint Running Mechanics – to run at a fast pace that requires a high or intense neuromuscular effort. The basics of sprinting can be summed up into three phases - start phase, drive phase, and acceleration phase.

a) Start Phase - may be from a two, three, or four point stance, requiring strength and power to over come inertia. Below is a checklist of proper mechanics:

·      Head position-should be down with chin near the collar and neck relaxed.

·      Torso position-(two & three point stances) should be achieved with the hips being higher than the head or hips raised with the shoulders slightly forward of the hands.

·      Arm & hand position-finger tips or hands should be on the line (in a four point stance) or the opposite side hand to the front foot (in a three point stance) with the other arm extended back slightly higher than the hips.

·      Leg & feet position-should be determined by the feet position close (bunched), medium, or elongated. The front foot should be approximately one foots length from the start line with a 90 degree knee angle, while the back foot should be positioned to allow a 120 degree knee angle (this is also the stronger and/or more coordinated leg. Both heels are raised with the front bearing the most weight.

b) Drive Phase - coming out of the start to over come inertia from the stationary position or stance to achieve a 45-degree body lean angle.

·      Head position-should be looking down at the ground but relaxed (the head position dictates the body or torso position).

·      Torso position-should be 45 degree lean angle.

·      Arm & hand position-should be relaxed with a 90 degree angle at the elbow and strong powerful alternating elbow drive to the rear on the backswing.

·      Leg & feet position-feet should be dorsiflexed (toes and ankles pulled up toward the shins) with the ball of the foot (forefoot) striking the ground behind the hips. The legs should drive down toward the ground in a powerful motion (like auto pistons or punching the heavy bag) after the heel is pulled up into the hamstring area (this actually precedes the leg drive). Tighter knee angle and knee lift equals greater striking force. The first few foot strike are critical, they must be powerful and explosive (importance of leg, hip, back, & core strength).

c) Acceleration Phase - post drive phase to reach the maximum running speedwith a 70 degree body lean angle.

·      Head position-should be neutral with the chin level to the ground but relaxed (the head position dictates the body or torso position).

·      Torso position-should be 70 degree lean angle.

·      Arm & hand position-should be relaxed with a 90 degree angle at the elbow and strong powerful alternating elbow drive to the rear on the backswing. The hand or fist should automatically return into the front-swing but only to shoulder level.

·      Leg & feet position-feet should be dorsiflexed (toes and ankles pulled up toward the shins) with the ball of the foot (forefoot) striking the ground under the hips. The legs should drive down toward the ground in a powerful drive motion (focus on striking the ground under the hips) after the heel is pulled up into the hamstring area, which facilitates knee lift or a tight knee angle (this actually precedes the leg drive). Tighter knee angle and knee lift equals greater striking force.

‘Train Safe, Smart, & Results Driven’

Training Principles, Part Five - Principles Of Exercise Science Con’t

By James Walker CCS, STM, BioSig, Master Trainer

Training principles of exercise science con’t…

16. Reps and Sets Relationship – reps and sets have an inverse relationship, fewer reps require more sets while more reps require fewer sets.

·      In part this based on the motor learning principle of “repeated effort”- when learning a new skill, task, or lesson the more times it is repeated the easier it is to remember or to perform.

·      Consequently this “repeated effort” or practice will increase the number of times that the particular muscle fiber type and its corresponding energy system gets used thereby making future efforts easier and the muscle more conditioned.

·      e.g., motor skill of riding a bike or learning a different language or exercise, the more the effort is repeated the greater the learning capacity.

17. Super Compensation – the amount of time required for the body to fully recover from the previous workout or workouts.

·      There should be full recovery prior to repeating the same muscle workout for the best gains.

·      This will result in strength increases of 1-2% or by 1-2 repetitions each week.

·      Optimal increases will not occur with out the proper rest, recovery, and regeneration.

                                                                                                                                                                                                                              18. Technique and Posture – proper form and posture are necessary for correct muscle recruitment and optimal strength gains.

·      If a movement cannot be performed with the correct technique, form, and posture it should be stopped.

·      An assessment should be made to determine the reason, so that the necessary corrections can be made.

·      Remember correct technique and posture will optimize neural drive to the correct muscles and will prevent faulty muscle recruitment patterns.

·      E.g., excessive forward lean vs. upright torso in the squat, or treadmill vs. running outside.

19. Tempo-is the pace, rhythm, and time required for each repetition.

·      Planned tempo use will ensure correct muscle fiber and energy system recruitment, and will reduce injury and faulty motor patterns.

·      Tempo is usually expressed in counts e.g., 302, 301, 30X or 402, 401, 40X, or 502, 501, 50X, that are normal but may be 31X, 512, 911 counts.

·      The first number represents the negative (eccentric) phase of the rep, usually expressed in a 2-9 range.

·      The second number usually represents the midway point, usually expressed in a 0-2 range.

·      The last number represents the positive (concentric) phase, usually expressed in a X-2 range.

·      e.g., a 302 tempo for an arm curl, starting position at the bottom with the weight in front of thigh, a 2 count is performed while the weight is curled up to the shoulders, a 0 pause at the top or midway position,  a 3 count is done while lowering the weight to the start.

‘Train Safe, Smart, & Results Driven’