Speed Training with Nick Sorensen

Nick S.jpg

By James Walker CCS, STM, BioSig, Master Trainer

Nick Sorensen trained with AE most of his 10 year NFL career during his off seasons, beginning in June of 2002, after being drafted and released by the Miami Dolphins. That first year we worked with him for five and a half weeks prior to the pre-season camp.

After the initial assessment, we focused on improving his explosiveness, lean muscle mass, his lower core function, flexibility, sprint technique, and reminding him of the correlation between all of those things and his speed. In addition, we addressed his scar tissue needs, in the shoulders, rotator cuff, and lower legs, which inhibited muscle recruitment and performance, along with a few structural balance issues.

Nick never had an issue with body-fat ratios or fat composition, due to clean-healthy eating habits, even in the off season his body-fat was in the 6% and during the season 4%. When Nick began, his best forty-yard time was 4.41 seconds, when he left for camp his best time was 4.35 seconds.

In 2003 we wanted to make him completely healthy, muscular, and strong from the previous season's injuries. By camp with the Jaguars Nick was performing 135 lb dips, 50 lb close grip pull-ups, and 225 jerk presses, all for 3 reps. Likewise his sprinting technique was superb, with excellent angles, tempos, power, and limb placement. His best 40-yard times were 4.28 and 4.23 seconds.

In 2004 we started early as well, working around an elbow injury that he sustained at the end of the 2003 season. Although his time with us was limited due to team obligations and constraints but our goal was to increase his lean muscle mass, strength, explosiveness, over all flexibility, and muscle balance.

During the remainder of his career we worked with Nick through and around injuries to the elbow, shoulder, and lower leg, team off-season training restrictions, releases, transitions, and new team auditions. We would try and maintain all his performance qualities, muscle mass, strength, speed, power, range of motion, structural balance, scar tissue, and any minor injury concerns.

Through it all he learned to be proactive, disciplined, consistent, informed, healthier, and prepared in all phases of his self-care. Nick has been one of the fastest players on each of his teams, the Rams, Jaguars, Browns, and in the NFL. He maintained his 4.2s speed, until his retirement as a result of a neck injury in 2010.

‘Train Safe, Smart, & Results Driven’

 

 

 

What’s Up, Albert & The 300yd Shuttle?

By James Walker, CCS, STM, BioSig, Master Trainer

In this day and age of technology (cell phones, ipods, laptops, aps, internet, google, etc) that makes gathering information very accessible it’s amazing that so much incorrect and ignorant information permeates the airwaves, internet, and newsprint spheres. And this comes from journalist or in this case sports journalists who we used to rely on for accurate information! Especially since correct and reliable information is only a phone call or keystroke away.

There are countless university exercise science professors and sports-performance-strength coaches, all eagerly ready to be interviewed by some famous sports journalist concerning Albert Haynesworth’s struggle in the 300-yard shuttle. Why can’t he pass it or how should he have prepared in order to pass the easy or hard, depending on the commentator, 300 yd-shuttle test. “He needs more cardio”, “why didn’t his trainer prepare him”, “why didn’t he lose weight”, oh yeah he did lose weight, about 35 lb, “so why didn’t he pass”, or “just because he lost weight doesn’t mean he’s in football shape”, right?

I know all of my former professors, strength coaches, and exercise specialist who have mentored me the past 30 years cringe every time they hear, read, or see the responses from all of the media experts.

The 300-yard shuttle run consists of sprinting 25-yards down and back six times touching the line with the foot in order to complete 300 yards total distance. The times may range from 56 seconds for football receivers and defensive backs to 73 seconds for offensive and defensive linemen. After completion the participant rests 3-5 minutes (3 & ½ for the NFL Washington Redskins) then repeats the test a second time. The times can then be averaged or compared to determine the athlete’s fitness level.

The purpose of the 300-yard shuttle run is to test maximal anaerobic-sprint endurance and/or conditioning. In order to attain a reliable score the participant must sprint at maximum effort and not pace themselves. The general testing populations are sports that involve anaerobic-sprint endurance like-.basketball, hockey, rugby, and soccer.

Now I must confess that when I had to take Testing and Measurement and Statistics decades ago I thought I’d never use any of it but I’ve consistently relied on and utilized the information over and over, especially administering performance assessments and analyzing training data.

All test must be valid, reliable, and objective, all interrelated values and that the measurement must measure the component that it supposed to measure; measure the component consistently; and result in similar scores regardless of the administer.

Let’s look at a quick review of those terms valid, reliable, and objective.

Test validity refers to the degree to which the test measures a specific component that it is intended to measure. The test should contain tasks that reflect those specific components to be measured or it’s content validity.

Test reliability refers to the degree to which the test yields consistent and stable scores over repeated trials and time. Reliability depends upon how strict the test is conducted and how motivated the participant is to perform the test.

Test objectivity refers to the degree to which the test can be measured repeatedly and reliably by various testers with minimum subjectivity.

So in spite of how you may feel about Albert and his conditioning it’s amazing that this test is used to test football players, yet alone a 300 lb lineman. Considering that the average play last between 4-5 seconds, why would you test something that last 50-70 seconds? Does this sound valid, reliable, or objective?

First of all, 4-5 seconds of maximal effort utilize absolute strength, power, and speed, all anaerobic bio-components that involve IIB fast-twitch muscle fibers and alactic-glycolytic energy systems.

Secondly, 56-73 seconds of maximal effort (actually slightly sub-maximal) utilize strength and speed endurance that involves IIA fast-twitch muscle fibers and lactic-glycolytic energy systems. The two are very different in their respective functions and actions.

Thirdly, there is another sub-maximal speed endurance IIA fiber that utilizes a glycolytic-oxidative energy system.

Fourthly, none of these are aerobic which starts to kick in after several minutes of continuous sub-maximal effort that involve slow–twitch IA muscle fibers and primarily an oxidative energy system.

In the exercise science community it really doesn’t make since. So when these experts see test such as the 300-yard shuttle or parts of the NFL combine test they cringe, shake their heads, and wonder if any of them ever picks up an exercise science journal or text.

In summary the test is not a very good indicator of anaerobic alactic power required for football. It does not make sense to any knowledgeable exercise scientist. A better test for football conditioning would involve maximal efforts of 4-5 second that are repeated numerous times with 15-30 seconds of recovery to simulate the huddle. Watch the game, doesn’t that make more since?           

‘Train Safe, Smart, & Results Driven’

                                    

Training Principles, Part Six - Principles Of Exercise Science Con’t

By James Walker CCS, STM, BioSig, Master Trainer

Training principles of exercise science con’t…and concluded.

20. Time Under Tension (TUT) – is the time required to complete a rep or a set (group of reps).

·      TUT is influenced by the tempo.

·      Muscle fiber type recruitment depends on time under tension.

·      e.g., tempo x reps = total time under tension per set, 302 tempo = 5 seconds total tempo x 6 reps = 30 seconds of time under tension per set.

21. Workout Duration– the anaerobic system (speed and strength) has 30–60 minutes of optimal energy before productivity decreases.

·      Keeping workouts within this time frame will increase gains in strength and performance.

·      Consequently, blood cortisol levels significantly increase after 45 minutes of working out and training becomes counter productive.

·      Simultaneously, the bodies’ natural muscle building hormone androgen begins to drop off at this time, which will further inhibit growth and gains.

·      So anaerobic workouts within 30-60 minutes will maximize increases in muscle, strength, and performance.

This concludes Part Six, next Part Seven Sprint Mechanics.

 

Training Principles, Part Five - Principles Of Exercise Science Con’t

By James Walker CCS, STM, BioSig, Master Trainer

Training principles of exercise science con’t…

16. Reps and Sets Relationship – reps and sets have an inverse relationship, fewer reps require more sets while more reps require fewer sets.

·      In part this based on the motor learning principle of “repeated effort”- when learning a new skill, task, or lesson the more times it is repeated the easier it is to remember or to perform.

·      Consequently this “repeated effort” or practice will increase the number of times that the particular muscle fiber type and its corresponding energy system gets used thereby making future efforts easier and the muscle more conditioned.

·      e.g., motor skill of riding a bike or learning a different language or exercise, the more the effort is repeated the greater the learning capacity.

17. Super Compensation – the amount of time required for the body to fully recover from the previous workout or workouts.

·      There should be full recovery prior to repeating the same muscle workout for the best gains.

·      This will result in strength increases of 1-2% or by 1-2 repetitions each week.

·      Optimal increases will not occur with out the proper rest, recovery, and regeneration.

                                                                                                                                                                                                                              18. Technique and Posture – proper form and posture are necessary for correct muscle recruitment and optimal strength gains.

·      If a movement cannot be performed with the correct technique, form, and posture it should be stopped.

·      An assessment should be made to determine the reason, so that the necessary corrections can be made.

·      Remember correct technique and posture will optimize neural drive to the correct muscles and will prevent faulty muscle recruitment patterns.

·      E.g., excessive forward lean vs. upright torso in the squat, or treadmill vs. running outside.

19. Tempo-is the pace, rhythm, and time required for each repetition.

·      Planned tempo use will ensure correct muscle fiber and energy system recruitment, and will reduce injury and faulty motor patterns.

·      Tempo is usually expressed in counts e.g., 302, 301, 30X or 402, 401, 40X, or 502, 501, 50X, that are normal but may be 31X, 512, 911 counts.

·      The first number represents the negative (eccentric) phase of the rep, usually expressed in a 2-9 range.

·      The second number usually represents the midway point, usually expressed in a 0-2 range.

·      The last number represents the positive (concentric) phase, usually expressed in a X-2 range.

·      e.g., a 302 tempo for an arm curl, starting position at the bottom with the weight in front of thigh, a 2 count is performed while the weight is curled up to the shoulders, a 0 pause at the top or midway position,  a 3 count is done while lowering the weight to the start.

‘Train Safe, Smart, & Results Driven’

Training Principles, Part Three -Principles Of Exercise Science Con’t

By James Walker CCS, STM, BioSig, Master Trainer

Training principles of exercise science con’t…

7. Muscle Balance – each muscle action or group has an opposite muscle action or group (agonist vs. antagonist).

·      e.g. triceps vs. biceps, must maintain a mutual balance in strength and flexibility to function properly.

·      In performance activity the antagonist muscles may act as a brake to slow down acceleration e.g. the elbow flexors act as a brake to the elbow extensors in a punch, so they need to be strong to perform this task.

·      Demonstrate-a throw or punch or sprint.

8. Muscle Fiber Type and Energy System – there are two basic muscle fiber types, slow twitch (IA) and fast twitch (IIAo, IIA & IIB). Each muscle fiber type has a corresponding energy system that supplies it and determines its action and performance parameters.

·      Slow twitch (IA) utilizes oxygen (aerobic) as its primary energy source, 3 minutes or longer duration and has an intensity threshold of 25% or less of the persons strength capacity and is used during postural and endurance activities.

·      Fast twitch oxidative glycolytic IIAo utilizes glycogen (anaerobic) and oxygen (aerobic) as its energy sources and is strength endurance oriented, 2 to 3 minutes in duration and has an intensity of 25% to 60% of a person’s maximal strength capacity.

·      Fast twitch glycolytic IIA utilizes glycogen (anaerobic) as its primary energy source and is strength oriented, 13 to 30 seconds in duration and has an intensity of 60% to 85% of a person’s maximal strength capacity.

·      Fast twitch phosphogenic IIB utilizes creatine phosphate (CP) and adenosine triphosphate (ATP) (anaerobic) as its primary energy sources and is explosive-power oriented, 1 to 12 seconds in duration and has an intensity threshold of 85% to 100% of a person’s maximal strength capacity.

·      Examples: 25-50 mile race vs.800-1500 meters vs. 200-400 meters vs. 50-100 meters sprint.

9. Muscle Receptors and Sensors – within the muscles there are various receptors and sensors (proprioceptors) that perform specific tasks e.g.,

·      vestibular receptors- measure balance and equilibrium;

·      muscle spindle- measures change in muscle fiber length and change in muscle fiber speed;

·      Golgi tendon organ- measures the range of motion (rom) or stretch in muscle tendons;

·      Ruffini receptors- measures the position of the muscle and joint in relation to space;

·      Pacinian corpuscle- measures the tension and pressure within the muscle fiber and tendon.

·      All of these sensors relay information from the muscles to the spinal cord and/or to the brain or central nervous system. In turn the appropriate muscle response occurs. 

‘Train Safe, Smart, & Results Driven’

Training Principles, Part Two - Principles Of Exercise Science

By James Walker CCS, STM, BioSig, Master Trainer

There are quite a few scientific principles that apply to training. I will list some of my favorites that I use daily.

1. Central Nervous System Training (CNST) – is made up of the brain, spinal cord, nerve pathways, and sensors to the muscles and organs.

·      The impulse or signal to the muscles from the spinal cord is called neural drive, involving motor or efferent neurons, nerve fibers, motor units, motoneurons, and muscle fibers.

·      Things that interrupt and obstruct neural drive are poor posture, improper form, flexibility and strength imbalances, nerve injury, and scar tissue.

·      Demonstrate-ROM with proper vs. poor flexibility, seated rotation or elbow retraction

2. Critical Drop Off (CDO) – after the first set If the rep number drops by more than 2, e.g., from 6 to 3 reps or 20-30%, the particular exercise should be discontinued.

·      This drop off indicates neuromuscular exhaustion so stopping will prevent over training, reduce the possibility of injury, and allow the super compensation process to begin. So move on or continue with the next exercise.

3. Exercise Variation (EV) – by varying the exercises for each cycle over training and muscle imbalance can be significantly reduced.

·      For example during workout cycle one a flat chest press can be performed and for workout cycle two an incline press can be done.

·      Exercise variation may include changes in exercise selection, or changes in hand, foot, limb angle, or body position, and in apparatus type.

4. Faulty Muscle Recruitment (FMR) and Loading Patterns – faulty muscle recruitment occurs as a result of performing a task incorrectly and may be caused by:

·      Scar tissue present within the muscle which impedes its ability to function normally.

·      A muscle imbalance that effects the neural drive to the muscle.

·      Using too heavy a load so that the appropriate muscles can not perform the task.

·      Continuing to train while not addressing any of the previous issues or several other factors.

·      Remember how you practice will influence how you play and perform.

5. Faulty Loading Patterns (FLP) and Muscle Type Response – stability muscles also known as postural or tonic muscles tend to shorten and tighten under faulty or improper loading.

·      Their composition seems to be mostly slow twitch or IA type fibers.

·      While the dynamic, explosive, or phasic muscles tend to lengthen and weaken under faulty loading.

·      They seem to be made up of a predominance of fast twitch IIB and IIA fibers.

·      This is the general rule but some muscles may have dual roles and have a composition of several fiber types.

6. Muscle Action Response (MAR) – most muscles will be comprised of both fast and slow twitch fibers, however the percentages or ratios will vary based on genetics, and muscle group but training will affect it’s development.

·      E.g., fast vs. slow ratio may be 40:60 or 50:50 or 60:40 or 70:30, this will determine your athletic preference and possible physical training potential.

·      Muscles that flex joint angles like the arm and leg biceps tend to be comprised of mostly fast twitch fibers.

·      While muscles that extend the joint like the leg quadriceps and lower back erectors will have a greater endurance capacity.

·      Remember this is the general rule, individuals need to be tested to determine their specific muscle response.

‘Train Safe, Smart, & Results Driven’

Olympic Lifts In The Gym!

By James Walker CCS, STM, Biosig, Master Trainer

Olympic lifting! Olympic lifts and their variations such as the clean, clean and jerk, deadlift, jerk press, power pulls, snatch, etc are great exercises for athletics, fitness, and structural balance. When performed correctly they yield precise crossover results for jumping, power, speed, sports, and structural strength.

I see trainers and athletes performing them but with incorrect concept and technique that does something altogether different or that may lead to an injury.

YouTube and the web have great instructional videos now, that explain the concept and correct technique. Please search these: Tommy Kono-former Olympic weightlifter,   coach, and judge, has a six part series; Chad Ikei-former Olympic weightlifter and strength-performance coach, has a two part series; Cara Head-retired Olympic weightlifter, now coach, has several training videos; All Things Gym; Barbell Shrugged; Breaking Muscle; Catalyst Athletics; and Power Clean Bible; all have very clear instructional videos, along with written commentary.

‘Train Safe, Smart, & Results Driven’ 

Maximizing Metabolic Function With Strength & Structure

By James Walker CCS, STM, BioSig, MT

After years of personal experience, observational relevance, and just plain frustration with the overall level of Fitness & Health Nationally, I wanted to write an article about maximizing workout time. Since time seems to be a determining factor or excuse for not working out, I’d like to offer some ways to maximize it. Part of my rationale is if you can only do 10 minutes of intense exercise, 6 times a week, at the end of the year its 3,120 minutes, which is a lot more than zero! Most importantly it will help to improve your life, fitness, and health! It’s all accumulative!

For example, a most recent fitness study claims that sixty seconds of high intensity exercise is more valuable than 20-30 minutes of low intensity exercise. For decades’ trainers in the know have been advocating interval training over long sustained endurance work. I learned this in the early 80’s, training to improve my mile run time, which I ran in 6 plus minutes with minimal endurance work, to 4 & a half minutes with sprint and strength work.

One of the things that I learned was that quality training was more important that quantity training. So sprinting on the track, up hills, in the pool, on the bike, etc, improved my speed and fitness more than doing any long distance aerobic workouts. It required way less time, instead of 90-120 minutes, it took me to 15-30. So I started doing 2 shorter workouts a day, one in the early am and another midday or later, whenever I could get it in. This naturally elevated my metabolism and kept it going throughout the day!

Getting married, having a family, and business mentally got me away from that but recently I’ve decided to return to it but make it easily doable, which I’m sharing with you.

Upon rising exercise will jump start your metabolism for the day the only drawback is usually your mind and body aren’t fully awake so choosing an exercise that will help wake you up, like a cup of coffee, but without being overwhelmed is important. Structural strengthening exercises like Y raises, trap 3 raises, Petersen step ups, lying hip bridges, side arm rotations, planks, etc will serve this purpose. Just doing 3 sets of 60 seconds each will wake you up, jump start your day, and not require much time 4-6 minutes total, with 30-60 seconds rest or less between sets.

AM Workout Example:

Day 1, Lying single bent leg hip bridge with foot on the floor or elevated, 60s x 3 sets, with a 151 tempo.

Day 2, Front plank with forearms arms on top of a physioball, 60s x 3 sets, with a 60s tempo.

Day 3, Lying Y arm raise with dumbbells, 3-5lbs, 60s x 3 sets, with a 151 tempo.

Day 4, Petersen step ups, using a normal step, 60s x 3 sets each leg, with a 111 tempo.

Day 5, Lying Leg raise & hip lift, with knees slightly bent, 60s x 3 sets, with a 111 tempo.

Day 6, Lying on side, arm rotation with a dumbbell, 1-10lbs, 60s x 3 sets, with a 311 tempo.

Do as many as possible (amap) with good form, pause if necessary, then continue until 60s is up. Eventually you’ll be able to complete the 60s without pausing with good form.

Midday or afternoon workout would be at a higher intensity level, since your mind and body should be optimally active. Thus using large muscle groups or compound or multiple joint exercises should be the plan. This could include alternating a upper and a lower body exercise, like a push up or bench press with a squat, performed together in a superset fashion. Possibly doing each set for 30-60 seconds depending on your goal, completing 6-8 sets of each upper and lower body exercise. If Four exercises is used do 3-4 sets of each. This should take 15-30 minutes total, including a quick 3-4 set warm up for each. The resistance should be heavy but allowing good form, controlled tempo, and theability to complete the set.

Warm up sample: i.e., bench press, if your actual exercise weight is 200lb, then warm up set one is 100lb x 3-4 reps, set two is 125lb x 2-3 reps, set three is 150lb x 1-2, and set four is 175lb x 1-2 reps, or using approximately 50%, 62%, 75%, and 87% of your workout weight to warm up with.

PM Workout Example:

Day 1, A1-Barbell or dumbbell split squats, 30-60s each leg x 6 sets, with a 301 tempo; A2- Lying pull ups, 30-60s x 6 sets, with a 311 tempo.

Day 2, A1-Barbell or dumbbell Romanian deadlifts (RDL), 30-60s x 6 sets, with a 301 tempo; A2- Barbell or dumbbell bench press, 30-60s x 6 sets, with a 301 tempo.

Day 3, A1-Double or single leg Physioball leg curls, 30-60s each x 6 sets, with a 311 tempo; A2-Barbell or dumbbell upright row, 30-60s x 6 sets, with a 311 tempo.

Day 4, A1-Barbell or dumbbell squat, 30-60s x 6 sets, with a 301 tempo; A2-Chin ups, 30-60s x 6 sets, with a 201 tempo.

Day 5, A1-Barbell or dumbbell or weight plate, 45 degree back extensions, 30-60s x 6 sets, with a 311 tempo; A2-Barbell or dumbbell seated press, 30-60s x 6 sets, with a 301 tempo.

Day 6, A1-Seated or prone machine leg curls, 30-60s x 6 sets, with a 311 tempo; A2-Barbell or dumbbell pullover, 30-60s x 6 sets, with a 311 tempo.

The most important aspects are just doing it (aka Nike, ‘Just Do It’), consistency (doing it on a regular basis), correct form (good posture & tempo), intensity (70-90% of a 1 rep max lift), and short duration (15-30 minutes). The exercises can be performed numerous ways, upper body together, lower body together, upper & lower body together, or combining 2-4 exercises together.

  At night, before dinner if possible, stretch for 60s x 3 sets. Choose your worst or most difficult stretch a do it for 60s sets, preferably in a PNF manner, i.e., contract the muscle for 5-10 seconds, followed by a 2-3 second release and relax. Each night you can choose a different stretch or repeat the same tight one. This will offer you a complete training regime taking 25-35 minutes a day, keeping you active at least three times a day.

I hope this is helpful,

'Train Safe, Smart, & Results Driven’

WHY TRAIN WITH AE CREATING ELITE?

By James Walker CCS, STM, BioSig, Master Trainer

Q: Why should I pay for your service when I can get a similar service elsewhere for cheaper?

A: Sometimes externals look similar but they really are not under critical scrutiny. An example wouldbe similar to this analogy. I can build or purchase a kit car that looks like a Lamborgini (a top Italian Performance Automobile) for $25,000 compared to the $250,000 of a real Lamborgini. They may appear identical but under critical testing and performance on the track the real Lamborgini does 0-60 in 3seconds, 1/4 mile in11 seconds, and has a top speed of 210 mph while the kit car does 0-60 in 6 seconds, ¼ mile in 14 seconds and has a top speed of 150mph with some luck. On the outside they look almost identical but on the track there is a vast difference.

There are many trainers and coaches who can improve performance via conditioning and strengthening programs but can or do they optimally develop the athletes potential (see our new website commentary article)? Can or have they taken someone who’s career, contract, signing bonus, and national or international ranking depends on them performing at the highest level not just taking one to two tenths of a second off of a 40 yd time. We specialize in optimizing an Athletes performance and we know that our results and success will speak for itself.

For example, AE Creating Elite individually and collectively has done that repeatedly with many athletes at the highest level. We’ve also trained and mentored some of the areas top trainers as well. Some of our clients include:

·      NFL – Derek Cox (Jaguars, Chargers, & Vikings), Nick Sorenson (Rams, Jaguars, & Browns), Ed Thomas (Panther, & Jaguars), Regan Upshaw (Raiders, Redskins), Kevin Mitchell (49’rs, Saints, & Redskins), Renaldo Wynn (Panthers, Jaguars, & Redskins), Kato Sewanga (Redskins, Giants, & Colts), Leonard Stephens (Redskins), Steve Tate (Mountain Lions),

·      Arena – Nate Daniels (Richmond)

·      Semi-Pro - Marlow Morgan (Kings), Nick Sims (Kings), Scott Woodward (Kings), Luke Treaster (Kings), Payton Lamb (Kings), Jim Adkins (Kings), Jace Summer (Monarchs),

·      Marathon – Marny Gilluly (Reebok)

Bodybuilding - Jackie Horton (MD State); Ed Taylor (MD State); Yaz Boyum (IFBB Pro).

·      MLB - Mark Tugwell (Phillies),

·      PGA – Woody Fitzhugh (PGA), Will Britt (Myrtle Pro Golf Academy),

·      USAW - Cara Heads (USA Olympic Weight Lifter),

·      Rugby – Jason Kallivocas, Ian Purcell, Raoul Socher

·      Swimming – Peter Garrett ( Olympics)

·      Triathlon – John Pellerito, Lonnie Crittenden, Chuck Sarich

·      Fitness – Mary Perry ( ),

·      Military - Amelia McDermott (USAF), Rachel Forrest VMI), Daniel Behne (USNA), Gavin Forrest (Duke/USA)’ Alex Schade (Duke/USA)

·      Law Enforcement – Bill Kelmartin (Deputy Sheriff, First Sergeant); V. Forrest (*),

·      Attorneys / Lobbiest – Bernie Dietz (Dietz Law), Jim Conzelman (Baker Hostetler), John McGeehan (McGeehan & Associates), Walter Perkins (Attorney & Inventor), Margaret Pfeiffer (Sullivan & Cromwell), Jim Ackers (Sullivan & Cromwell), Marcia Gelman (Winston & Straughn), Gloria Malkin (US Justice Dept), Ron Platt (McGuire Woods), Evelyn Hurwich (Circumpolar Conservation Union), Ken Crerar (Council Of Insurance Agents & Brokers), Mike Dorsey (),

·      Ceo’s / Executives / Business Owners / Entrepreneurs – Yvette Lawless (Living Color), Lonnie Gaddy (Entrepreneur), Carlos Gavidia (Direct Connect), Kay Kendall (Centennial), Marc Palumbo (US Data Works), Joe Plumpe (Studio 39), CW Gilluly (Comtex), Greg Farmer (Nortel), Kay Kendall (Washington Ballet Board President), David Levine (Consultant), Patricia Ghiglino Lopez (Professional Restoration), Bill Miller (Washington Post), Jean Neal (Senate Chief Of Staff), Eugene Boyd (Library Of Congress),

·      HS & College :

§  Baseball – Grant Flowers (Carolina Coastal), Kyle Howell (Notre Dame Acadamy/Wagner C), Matt Burch (Notre Dame Acadamy/Naval Academy), Brett Spencer (Notre Dame Acadamy/Lewis Clarke St U), Joe Strange (Randolph Macon C), Mark Tugwell (VA Tech), Nick Grillo (Notre Dame Acadamy/William & Mary),

§  Basketball - Chris Kearney (Westfield HS/Catholic U), Drake Diamond (Centreville HS/Wheaton C), Andrew Lawless (Westfield HS), Jeff Baxter (U of MD), Steve Rivers (U of MD), Ben Coleman (U of MD), Len Bias (U of MD), Jeff Adkins (U of MD),

§  Football – Cole Downer (Clemson U), Jimmy Marten (VA Tech), Luke Bowanko (UVA), Andy Lewis (Syracuse U), Zach Glatter (Princeton), Jamey McClendon (Salisbury State), Martellus Braxton (Shaw U), PJ Donavon (Hampton U), Mike Sheil (Kings C), Pat Sheil (Centreville HS/Boston C), Hassan Dixon (Naval Academy Prep), Jamie Donovan (Utica C), Jason Salter (Washington). Anthony Codero (Shenandoah U),

§  Golf – Nick Grillo (Notre Dame Acadamy),

§  Lacrosse – Jimmy Cahill (Sidwell Friends/Lehigh U), Nick Betonti (Stonewall Jackson HS/Lynchburg), Joe Britt (Fairfax HS/Penn St), Michael Britt (Fairfax HS/UVA), Robby Battle (Woodberry/Naval Academy), Kevin Mayer (Duke), Paul Moline (Lynchburg), Jay Battle (Chantilly),

§  Softball – Patti Hinko (Pul VI/Duquesne U), Elizabeth Jones (Westfield HS/St Louis U), Carolyn Jones (Westfield HS/Boston C),

§  Soccer - Chelsea Walter (Longwood U),

§  Tennis - Ariel Burke (Bullis/Townsend U), Moriah Burke (Bullis/Townsend U),

§  Track & Field - Nikki Jenkins (Fauquier HS/JMU), Julie Strange (Loudon County HS/JMU), Ishmael Williams (Tuscarora HS)

§  Volleyball – Jenna Strange (Loudon County HS/William & Mary), Katrina Kirby (Loudon County HS/Queens U), Kelsey Hrebenach (Heritage HS/U of MD), Mallory Brickerd (Loudon County HS/William & Mary), Marguerite Hanna (Azusa Pacific U), Julianne Hanna (U of N.M.), Luke Reichel (Messiah C), Nathalia Suissa (Nortwood HS/NC St),

·      Training - Yaz Boyum (IFBB Pro Body Builder & YAZ inc), Gina Fortuna (Beyond Fitness), Petr Speight (PET), Owen Browne (Master Trainer WSC), Art Tapera (Art The Trainer), Tal Cottey (Master Trainer TSI), Bonnie Falbo (Coaching Express), Christopher Dabrowski (T-Fitness), Patti Cinelli (Health & Fitness Writer, Lecturer, & Trainer), Patricia Cosby Tawfik (Anti-Aging Exercise Specialist), David Park (NASM, BIOSG), Carla Morrison (Prophecy Fitness), Bobby Mellott (WSC, Reebok, Trainer, LA Fitness Director), and many others (see www.aecreatingelite.com website).  

AE Trainers Push Athletes To Next Level

 

Guest Post by Paul McKenzie from May 24, 2011

Customized program aims to locate hard-to-find weak spots in elite athletes and those looking for the next level.

People who underperform in their sport or in life in general often have trouble understanding why. AE Creating Elite on Red Rum Drive tries to provide those answers.

“Most people underperform in both,” said co-owner James Walker. “But not always for the reasons they suspect.”

AE uses in-depth assessments and ongoing analysis to find out why their clients are underperforming, whatever their goals may be. The range of goals targeted by the facility’s clientele is wide, and Walker said the expertise found in the gym’s owners and coaches makes such a range possible.

Walker said co-ownwer Monica Walker and coaches David Parks and Casey Johnson are former collegiate athletes and arena football players. “All of us have extensive training in fitness, athletics and nutrition to draw on that you can’t find in most commercial gyms,” he said. “Combined, the coaches here have almost 40 years of training and experience to draw on.”

The gym employs a specialized program, designed for each athlete. “Every client has an in-depth assessment to determine exactly what it is they need,” Walker said, adding than the goals of athletes in training are often at odds with what think they need. “We’ve had professional athletes come in with pain in their hamstrings, for example, whose physical trainers believe that they just need someone to help them be more flexible there. After an assessment, they discover that their lower abdominal area is weak and their quads are tight, which is leading to the hamstring pain. Fix that area, and their hamstring pain goes away.”

As another example, Walker said golfers and squash players have come to the facility to improve arm strength only to find that imbalances in their shoulders are what hold them back. The important point to remember in their approach, Walker emphasized, is that the body is a holistic machine.

“For the older noncompetitive athlete, we aren’t assessing to see how fast they can hit a ball, but rather how they do the basic motor skills like running, jumping, throwing and swinging,” Walker explained. “For the elementary level child, we’re emphasizing mastering those same basic sports skills. For more competitive athletes or older children, we focus on more sports-specific movements, but always with the same approach of treating the body as an interactive and holistic machine.”

The cost of misunderstanding the mechanics of a movement can be twofold, according to Walker: lower performance and higher risk of injury.

“When you ask a body part to take on a load for which it isn’t designed, your body will try to obey you, but you’ll be under performing, and perhaps more importantly, you’ll be operating with a much higher risk of injury. In our assessment we’re looking for subtle cues that others often don’t see or look for to find exactly where the problem lies, and sometimes it’s in an area a novice might easily miss.”

And the desire to correct such imbalances is not limited to elite athletes.

“Everyone wants to perform better, even if they’re not competing for a belt or medal,” Walker emphasized. “They all want to walk or run better and without pain.”

Walker works with professional athletes routinely, but said the real payoff often comes from watching other clients grow. In the end, Walker is passionate about possibilities, and is convinced that most people can accomplish far more than they believe possible.

AE Creating Elite is located at 21690 Red Rum Dr., Suite 102 & 117, Contact the facility at 703.488.9860 or info@aecreatingelite.com.

Training Smart vs. Hard Which Is Better?

By James Walker CCS, STM, BioSig, Master Trainer

I've been telling my clients for decades that it's better to train smart than hard given the choice. I find myself exporting these words to younger athletes almost on a daily basis. It sounds smart to say it but what does it really mean?

You always hear athletes talking about training hard or how hard their training session was. I think they are referring to effort and difficulty, meaning if a workout requires a lot of effort or is difficult to execute then it’s hard, and it must be good.

With this model working out to exhaustion or past muscle failure is the standard for a productive training session. If you’re suppose to do 10 repetitions, do 12 or 15 or 20, it’s better. Maybe the athlete is supposed to run eight, 20-meter sprints but instead they run twenty or even forty. As you can see this type of philosophy were more is better can apply to any type of training. Quality and purpose go out the window for quantity and difficulty.

Workout until you puke or pass-out is the goal and every training session should be like this! I see trainers in the gym doing this with clients all the time. The client has reached muscle failure with reasonable form at 10 reps but the trainer belts out “I want 10 more”. You then see the client attempting the next 10 reps looking like a contortionist with the circus.

Likewise I've heard horror stories from athletes who were injured after being told to lift progressively heavier weights or more reps, without considering correct form, structure, progression or supervision.

The problem that I have with this type of training is that it’s not very quantifiable or scientific, yet it’s hard or difficult. Quantifiable meaning there are no restrictions or limitations or rules regarding training nor any record keeping or training logs. You rarely see the trainer or trainee keeping a record of their reps, sets, or session when doing this type of protocol.

If they did, then it would become obvious after a month or two. Especially when the trainee’s strength, endurance, reps, or composition hasn’t changed. In addition the trainee is consistently tired and has sleep, inflammation, or tendinitis issues. It’s not working!

Training scientifically means using the principles of science to orchestrate, predict, and maximize the client’s progress by planning and prescribing correct protocols.

For example the Principle of Super Compensation states that when your body or muscles fully recover from the workout you have a better increase in strength-performance than with a partial or limited recovery period. So if you’re tired reducing the volume or number of sets in the workout will yield better results vs. doing the entire workout just because it’s scheduled, hard, or challenging.

Likewise waiting an extra day or two to allow complete recovery may yield even better results. Not only better results but possible a reduction in injury and illness by not over exhausting an already tired immune system. That’s scientific or smart training!

Another scientific principle that gets violated when hard misguided training methods are used is called faulty motor pattern, affecting the muscle recruitment patterns in a negative way. For example if a squat is perform with a weight load that is too heavy or the repetition number goes beyond what the trainee can perform with correct form, the central nervous system will recruit additional muscles to complete the task. If those additional muscles aren’t design or trained to perform that task, inflammation, scar tissue, or injuries will result from this compensation.

By knowing scientific principles and how to apply them you can reach your goals faster, safer, easier, and smarter. By having an outline or plan to achieve your goals you will reduce over training, injury, frustration, and optimize results. This is called Periodization, planning your workout in advance by weekly and monthly stages, in order to achieve your goals.

Training this way is measurable, repeatable, quantifiable, reliable, objective, valid, challenging, and more controllable yet yields predicable results, very scientific. Whereas hard training is just hard!